
Early Experience with an Internet Broadcast

System Based on Overlay Multicast
Yang-hua Chu Aditya Ganjam T. S. Eugene Ng

Sanjay G. Rao Kunwadee Sripanidkulchai Jibin Zhan
Hui Zhang

December 2003
CMU-CS-03-214

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was sponsored by DARPA under contract number F30602-99-1-0518, and by NSF under
grant numbers Career Award NCR-9624979 ANI-9730105, ITR Award ANI-0085920, and ANI-9814929.
Additional support was provided by Sloan Research Fellowship and Intel. Views and conclusions contained
in this document are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of DARPA, NSF, Intel, or the U.S. government.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
Early Experience with an Internet Broadcast System Based on Overlay
Multicast

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: overlay networks, Internet evaluation, peer-to-peer, multimedia broadcast

Abstract

In this paper, we report on experience in building and deploying an operational Internet
broadcast system based on Overlay Multicast. In over a year, the system has been providing
a cost-effective alternative for Internet broadcast, used by over 3600 users spread across
multiple continents in home, academic and commercial environments. Technical conferences
and special interest groups are the early adopters. Our experience confirms that Overlay
Multicast can be easily deployed and can provide reasonably good application performance.
The experience has led us to identify first-order issues that are guiding our future efforts
and are of importance to any Overlay Multicast protocol or system. Our key contributions
are (i) enabling a real Overlay Multicast application and strengthening the case for overlays
as a viable architecture for enabling group communication applications on the Internet, (ii)
the details in engineering and operating a fully functional streaming system, addressing a
wide range of real-world issues that are not typically considered in protocol design studies,
and (iii) the data, analysis methodology, and experience that we are able to report given our
unique standpoint.

1

1 Introduction

The vision of enabling live video broadcast as a common Internet utility in a manner that
any publisher can broadcast content to any set of receivers has been driving the research
agenda in the networking community for over a decade. The high cost of bandwidth required
for server-based solutions or content delivery networks, and the sparse deployment of IP
Multicast are two main factors that have limited broadcasting to only a subset of Internet
content publishers such as large news organizations. There remains a need for cost-effective
technology for low-budget content publishers such as broadcasters of seminars, workshops
and special interest groups.

Recent work in Overlay Multicast [14, 9, 19, 7, 21, 30, 39, 22, 34, 25, 41, 10, 5] has made
the case that overlay networks are a promising architecture to enable quick deployment of
multicast functionality on the Internet. In such an architecture, application end-points self-
organize into an overlay structure and data is distributed along the links of the overlay.
The responsibilities and cost of providing bandwidth is shared amongst the application
end-points, reducing the burden at the content publisher. The ability for users to receive
content that they would otherwise not have access to provides a natural incentive for them
to contribute resources to the system.

Most of the existing work, including our own earlier work [9, 8], focus on issues related to
“protocol design,” and evaluate their potential using simulation or university-based Internet
test-beds. We believe that an equally important and complementary style of research can be
conducted using an “application-centric” approach. This approach involves the wide-spread
operational use of an application by real users, and letting the experience gained direct the
research process. The more content publishers and receivers rely on the application, the
stronger the case for Overlay Multicast, validating its relevance as a research question. In
addition, the unique experience obtained in the process leads to important insight that can
motivate future research in the area.

In adopting the “application-centric” approach, our primary consideration was to provide
a useful and deployable tool to the general public, and reach operational status as quickly
as possible. Therefore, we identify and address a wide range of issues, some of which are
not typically considered in protocol design studies, but affect the successful deployment of
Overlay Multicast. Our system copes with dynamics in user participation, adapts to appli-
cation performance and Internet dynamics, supports users that have a wide range of network
bandwidth and supports users behind network address translators (NATs) and firewalls. We
have built supporting mechanisms such as logging receiver performance, monitoring of sys-
tem components, and recovering from component failures. In engineering our system, we
have adopted simple or natural solutions, with the provision that the design decisions could
be revisited in the light of future experience. This approach has accelerated the deployment
of the system, and, consequently has led to faster feedback from real deployment.

The challenges involved in obtaining operational experience we report in this paper must
not be underestimated. First, we have invested significant effort in convincing content pub-
lishers and event organizers that it is worth their while to experiment with the new technol-
ogy. Second, while we have made earnest efforts to get our system deployed, the participation
of viewers in our broadcasts depends on a range of factors not under our control, including

2

(ADSL, behind NAT)

(Wireless,
behind firewall)

(Ethernet)

Broadcast Source
(Ethernet)

EncoderA/V Signal

Media Interface

Monitor

Logger

Media Player

Figure 1: Broadcast system overview.

the content we have access to. Third, unlike conventional research experiments, we have fre-
quently had to work under the pressure to succeed in even our earliest broadcast attempts.
Failures would significantly deter event organizers and limit future adoption of our system.
One consequence is that it is critical to adopt robust, stable and well-tested code – a per-
formance refinement that may seem trivial to incorporate may take months to actually be
deployed.

In over a year, we have been building an operational broadcast system based on Overlay
Multicast and deploying it among more than 3600 real users in real Internet environments
for over 20 events. We view the design and deployment effort as an ongoing process, and
report on the experience accumulated so far. Overall, our experience confirms that Overlay
Multicast is easy to deploy and can provide reasonably good application performance. In
addition, we believe that our unique set of data, analysis methodology, and experience are
useful to the research community.

The rest of this paper is organized as follows. In § 2, we present an overview of the system.
§ 3, 4, and 5 presents the deployment experience, analysis methodology, and performance
analysis of our system. § 6 presents key design lessons learned from the experience that are
guiding the future research directions.

2 System Overview

Figure 1 gives a high-level overview of our broadcast system. The encoder takes the mul-
timedia signal from the camera, converts into audio and video streams, and sends to the
broadcast source. The broadcast source and receivers run an overlay multicast protocol to
disseminate the streams along the overlay. Each receiver gets the broadcast stream, and for-
wards to the media player running on the same machine. In addition, the participating hosts
send performance statistics to the monitor and log server for both on-line and post-mortem
analyses.

The detailed software architecture at the source and the receiver is depicted in Figure 2.
Tracing the data flow, the broadcast source encodes the media signal into audio and multiple
video packet streams (a), marks the packets with priority bits (b), and sends them to the
overlay modules (shaded blocks). Multiple streams and prioritization are discussed in § 2.2.
The overlay modules replicate packets to all of its children (c). Packets are translated from

3

Connectivity Layer (OID/IP Translation)

Overlay Routing

LQ Video (100kbps)
Audio (20Kbps)

HQ Video
(300kbps)

Broadcast Source

Overlay Forwarding

Prioritized
Forwarding

UDP TCPTCP

Chooser
Serializer with

Priority Marking

(a)

(b)

(c)

(d)

(e)

(1)

(2)

(3)

Mixer

Receiver

Audio Video

Figure 2: Block diagram of the software architecture for the broadcast source (left) and the
receiver (right). Shaded blocks are shared by all hosts. Arrows indicate data flow.

Overlay ID (OID) to IP addresses (d), and forwarded to each child using prioritization
semantics (e). Once a child receives packets, it translates IP addresses back to OIDs (1),
selects the best video stream, adjusts the RTP/RTCP headers (2), and forwards to the media
player (3). The use of OID is described in § 2.4. The child also sends each data packet to the
overlay module which forwards the data to its descendants. The rest of this section describes
each of these blocks in detail.

2.1 Overlay Protocol

We provide a sketch of the overlay protocol below as a basis for the rest of the discussion.
Because our application is single-source, the protocol builds and maintains an overlay tree
in a distributed fashion. The tree is optimized primarily for bandwidth, and secondarily for
delay. Each node also maintains a degree bound of the maximum number of children to
accept.
Group Management: New hosts join the broadcast by contacting the source and retrieving
a random list of hosts that are currently in the group. It then selects one of these members
as its parent using the parent selection algorithm. Each member maintains a partial list of
members, including the hosts on the path from the source and a random set of members,
which can help if all members on the path are saturated. To learn about members, we use
a gossip protocol adapted from [32]. Each host A periodically (every 2 seconds) picks one
member (say B) at random, and sends B a subset of group members (8 members) that A
knows, along with the last timestamp it has heard for each member. When B receives a
membership message, it updates its list of known members. Finally, members are deleted if
its state has not been refreshed in a period (5 minutes).
Handling Group Membership Dynamics: Dealing with graceful member leave is fairly
straight-forward: hosts continue forwarding data for a short period (5 seconds), while its
children look for new parents using the parent selection method described below. This
serves to minimize disruptions to the overlay. Hosts also send periodic control packets to
their children to indicate live-ness.

4

Performance-Aware Adaptation: We consider three dynamic network metrics: avail-
able bandwidth, latency and loss. There are two main components to this adaptation process:
(i) detecting poor performance from the current parent, or identifying that a host must switch
parents, and (ii) choosing a new parent, which is discussed in the parent selection algorithm.

Each host maintains the application-level throughput it is receiving in a recent time
window. If its performance is significantly below the source rate (less than 90% in our
implementation), then it enters the probe phase to select a new parent. While our initial
implementation did not consider loss rate as a metric, we found it necessary to deal with
variable-bit-rate streams, as dips in the source rate would cause receivers to falsely assume
a dip in performance and react unnecessarily. Thus, our solution avoids parent changes if
no packet losses are observed despite the bandwidth performance being poor.

One of the parameters that we have found important is the detection time parameter,
which indicates how long a host must stay with a poor performing parent before it switches
to another parent. Our initial implementation employed a constant detection time of 5
seconds. However our experience reveals the need for the protocol to adaptively tune this
timer because: (a) many hosts are not capable of receiving the full source rate, (b) even hosts
that normally perform well may experience intermittent local network congestion, resulting
in poor performance for any choice of parent, (c) there can be few good and available parent
choices in the system. Changing parents under these environments may not be fruitful. We
have implemented a simple heuristic for dynamically adjusting the detection time, involving
an increase if several parent changes have been made recently, and a decrease if it has been
a long time since the last parent change.
Parent Selection: When a host (say A) joins the broadcast, or needs to make a parent
change, it probes a random subset of hosts it knows (30 in our implementation). The
probing is biased toward members that have not been probed or have low delay. Each host
B that responds to the probe provides information about: (i) the performance (application
throughput in the recent 5 seconds, and delay) it is receiving; (ii) whether it is degree-
saturated or not; and (iii) whether it is a descendant of A to prevent routing loops. The
probe also enables A to determine the round-trip time to B. A waits for responses for 1
second, then eliminates those members that are saturated, or who are its descendant. It
then evaluates the performance (throughput and delay) of the remaining hosts if it were to
choose them as parents. If A does not have bandwidth estimates to potential parents, it
picks one based on delay. Otherwise, it computes the expected application throughput as
the minimum of the throughput B is currently seeing and the available bandwidth of the
path between B and A. History of past performance is maintained so if A has previously
chosen B as parent, then it has an estimate of the bandwidth of the overlay link B − A. A
then evaluates how much improvement it could make if it were to choose B.

A switches to the parent B either if the estimated application throughput is high enough
for A to receive a higher quality stream (see the multi-quality streaming discussion in § 2.3)
or if B maintains the same bandwidth level as A’s current parent, but improves delay. This
heuristic attempts to reduce resource usage by making hosts move closer to one another.
Degree Bound Estimation: In order to assess the amount of upstream bandwidth re-
sources each host can contribute to the overlay, we ask the user to choose whether or not it
has at least a 10 Mbps up-link to the Internet. If so, we assign such hosts a degree bound of

5

ADSL

Stanford Wireless
(audio +LQ video)

Berkeley Ethernet
(audio +HQ video)

Source

120Kbps

120Kbps
420Kbps

Encoders

HQ Video (300Kbps)
LQ Video (100kbps)

Audio (20Kbps)

Figure 3: Single overlay approach to host heterogeneity.

6, to support up that many number of children. Otherwise, we assign a degree bound of 0
so that the host does not support any children. We have been experimenting with heuristics
that can automatically detect the access bandwidth of the host, but this turns out not to be
straightforward. We discuss this further in § 6.

2.2 Support for Receiver Heterogeneity

Internet hosts are highly heterogeneous in their receiving bandwidth, thus a single-rate video
coding scheme is not the most appropriate. Various streaming systems have proposed using
scalable coding techniques such layered coding or multiple description coding (MDC) in
their design [37, 25, 5], however these technologies are not yet available in commercial media
players. To strike a balance between the goals of rapid prototyping and heterogeneous
receiver support, in our system, the source encodes the video at multiple bit-rates in parallel
and broadcasts them simultaneously, along with the audio stream, through the overlay as
shown in Figure 3. We run a unicast congestion control on the data path between every
parent and child, and a prioritized packet forwarding scheme is used to exploit the available
bandwidth. That is, audio is prioritized over video streams, and lower quality video is
prioritized over higher quality video. The system dynamically selects the best video stream
based on loss rate to display to the user. Thus, audio is highly protected. When a receiver
does not have sufficient bandwidth to view the high quality video stream, or when there are
transient dips in available bandwidth due to congestions or poor parent choices, as long as
the lower quality video stream is received, a legible image can still be displayed. We note
that while this design involves some overhead, it can be seamlessly integrated with layered
codecs if available.

Much of the deployment experience reported in this paper uses TCP as the congestion
control protocol. We implement priority forwarding by having parents in the overlay tree
maintain a fixed size per-child priority buffer. Packets are sent in strict priority and in FIFO
order within each priority class. If the priority buffer is full, packets are dropped in strict
priority and in FIFO order (drop head). The priority buffer feeds the TCP socket, and we
use non-blocking write for flow control. Note that once packets are queued in kernel TCP
buffers, we can no longer control the prioritization. While we were aware of this limitation
with using TCP, we were reluctant to employ untested UDP congestion control protocols in
actual large scale deployment. Our subsequent experience has revealed that while the choice
of TCP has only a minor hit on the performance of the prioritization heuristics, a more first-
order issue is that it limits connectivity in the presence of NATs and firewalls. Faced with
this, our recent broadcasts have begun using TFRC [13], a UDP-based congestion control
protocol.

6

Child Parent
Public NAT Firewall
UDP Transport

Public
√ √ √

NAT
√

?? ?
Firewall

√
? ??

TCP Transport
Public

√ √ √
NAT

√
? ×

Firewall
√ × ?

Table 1: Connectivity Matrix.
√

means connectivity is always possible. ? means connectivity
is possible for some cases of NAT/firewall and ? means connectivity is only possible if the
hosts are in the same private network.

To prevent frequent quality switches that could annoy a user, we adopted a damping
heuristic. Here, we aggressively switch to lower quality when high quality video has consistent
loss for 10 seconds, and conservatively switch to higher quality when no loss is observed in
the higher quality video stream for at least 50 seconds. Dynamically switching video qualities
required us to implement an RTCP mixer[15]. When video qualities are switched, the mixer
ensures the outgoing video stream to QuickTime is (i) masked as one contiguous stream; and
(ii) time synchronized with the audio stream. One limitation in our current implementation
is that if a host is displaying a low quality stream, the parent still forwards some data from
the high quality stream. We are currently refining the implementation by adding heuristics
to have the child unsubscribe from the higher quality stream, and periodically conduct
experiments to see when network condition has improved so that it can start receiving the
high quality stream.

2.3 Interface to Media Components

We use QuickTime [29] as the media player in our system because it is widely available and
runs on multiple popular platforms. We use Sorenson 3 [38] and MPEG4, both of which
are supported by QuickTime, as video codecs. To support receiver heterogeneity, the source
encodes the video at two target bit-rates (100 kbps and 300 kbps), and the audio at 20
kbps. We empirically determine the suitable encoding rates by experimenting with various
encodings of conference talks. We find that a frame size of 640x480 is necessary to read the
words on the slides. A minimal rate of 100 kbps yields watchable, 5 frames per second video
motion. A rate of 300 kbps produces good video quality with 15 frames per second. To
hide from the media player the fact that the overlay parent changes over time, we direct the
player to a fixed localhost:port URL which points to the overlay proxy running at the same
host. The overlay proxy handles all topology changes and sends data packets to the player
as if it were a unicast broadcast server.

2.4 NATs and Firewalls

Our initial prototype did not include support for NATs and firewalls, and we were motivated
to address this as we consistently needed to turn down over 20 − 30% of viewers in our
early broadcasts for the lack of such support. NATs and firewalls impose fundamental

7

restrictions on pair-wise connectivity of hosts on the overlay. In most cases, it is not possible
for NATs and firewalls to communicate directly with one another. However, there are specific
exceptions, depending on the transport protocol (UDP or TCP), and the exact behavior
of the NAT/firewall. Adopting the classification from STUN [16], Full Cone NATs can
receive incoming packets to a port from any arbitrary host once it sends a packet on that
port to any destination. Many hosts can address a host behind a full cone NAT using
the same port number. In contrast, Symmetric NATs allow incoming packets only from
the host that it has previously sent a packet to. Different hosts address a host behind a
symmetric NAT using different port numbers. Table 1 characterizes these restrictions for the
different transport protocols, where columns represent parents and rows represent children.
For example, communication is not possible between two NATed hosts using TCP unless they
happen to be in the same private network. In addition, “?” denotes that communication is
possible using UDP between two NATed hosts if one of them is behind a Full Cone NAT.
The firewalls which we refer to in Table 1 allow UDP packets to traverse in either direction.
The system does not support firewalls that block UDP.

The primary goals in supporting NATs and firewalls are: (i) enable connectivity, a
generic problem shared by many applications wishing to support these hosts and (ii) ad-
dress protocol-specific enhancements to become “NAT/firewall-aware” to improve efficiency
and performance.

2.4.1 Enable Connectivity

Use Overlay Identifier for Unique Naming: In the overlay protocol, each host needs
to have a distinct and unique identifier. The straightforward use of public and private IP
address and port does not serve this purpose because of symmetric NATs. To resolve this,
we assign a unique overlay identifier(OID) to each host and decouple it from its IP address,
separating overlay naming from addressing. When a host A joins the group, it is assigned an
OID by the source. The source creates a binding that maps the OID of A to its public and
private addresses and ports. This binding is distributed as part of the group membership
management protocol.
Learn, Maintain, and Translate Bindings: There are two ways for a host B to learn
bindings for host A. First, it can learn the binding as part of the group membership op-
erations. Second, it may receive packets directly from A. Bindings learned by the second
method are prioritized because they are the only ones that can be used to talk to a host
behind a symmetric NAT. Each host B maintains the OID and associated binding for every
other member A that it knows. The OID is translated into the appropriate binding when
B wishes to send a packet to A. In some cases A and B may be behind the same private
network, but have different public IP addresses. This is common in the case of large corpo-
rations that use multiple NAT gateways. We use a simple heuristic to match the prefixes in
the public IP address. This matching expires if B does not receive packets from A after a
short while.
Set up TCP Parent-Child Connection for Data: We use bi-directional connection
initiation, by which both parent and child attempt to open a connection to the other. If one
is a public and the other is NAT/firewall, then only one of the connections will be successful.

8

If both are public, then both connections will be successful and we arbitrarily close the
connection initiated by the host with higher IP address.

2.4.2 Making the Protocol Aware of NATs and Firewalls

The protocol works correctly with the connectivity service, without needing to make any
changes. However, being aware of connectivity constraints can improve protocol efficiency
and performance. We have identified 2 changes to the protocol to make it explicitly aware
of connectivity constraints.
Group Management and Probing: To increase the efficiency of control messages, we
enhance the group management protocol to explicitly avoid control messages between pairs
of hosts that cannot communicate (e.g., NAT-NAT). Similarly, for probing, we do not allow
NATs/firewalls to probe other NATs/firewalls.
Self-Organization: If the overlay protocol is aware of the NAT and firewall hosts in the
system, it can support more of them by explicitly structuring the tree. For example, an
efficient structure is one in which public hosts use NAT or firewall hosts as parents to the
extent possible. In contrast, a structure in which a public host is a parent of another public
host is inefficient because it reduces the potential parent resources for NAT hosts. However, it
was not clear whether the increased complexity of such mechanisms would lead to significant
benefit, so we did not optimize for it. We discuss this further in § 6.

3 Deployment Status

3.1 System Status

To make the broadcast system easily and widely accessible, and attract as many participants
as possible, we have taken effort to support multiple OS (Linux, Windows, MAC) and player
platforms (QuickTime, Real Player) and develop user-friendly interfaces for both publishers
and viewers. With the subscriber Web interface, any receiver can tune in to a broadcast by
a single click on a web-link.

The broadcast system is also designed for ease of deployment. We learned from our first
broadcast event that having 5 graduate students spend 2 days to manually set up a broadcast
was a barrier for deployment. Our publishing toolkit [12] has evolved since then into a user-
friendly web based portal for broadcasting and viewing content. This portal allows content
publishers to setup machines, machine profiles (such as which machines should be the source,
log servers, and encoders), and events. With this information configured, the broadcast can
be launched directly from the web. With no prior experience using the system and minimal
support from us, most content publishers spend a couple hours to set up and run a broadcast.
A monitoring system has been built to provide content publishers with online information
about individual participating hosts, the current overlay tree, the bandwidth on each overlay
link, and the current group membership. In addition, the system can recover from simple
failures such as automatically re-starting the log server when it crashes.

As a research vehicle, the broadcast system has a built-in logging infrastructure that
enables us to collect performance logs from all hosts participating in the broadcast for post-

9

Event Duration Unique Hosts/ Peak Size/
(hours) Waypoints Waypoints

SIGCOMM 2002 25 338/16 83/16
SIGCOMM 2003 72 705/61 101/61
DISC 2003 16 30/10 20/10
SOSP 2003 24 401/10 56/10
Slashdot 24 1609/29 160/19
Distinguished Lectures Series 9 358/139 80/59
(8 distinct events)
Sporting Event 24 85/22 44/22
Commencement 5 21/3 8/3
(3 distinct events)
Special Interest 14 43/3 14/3
Meeting 5 15/2 10/2

Table 2: Summary of major broadcasts using the system. The first 4 events are names of
technical conferences.

mortem analysis. The logs are sent on-line to a log server during the session. The data rate
is bounded at 20 kbps to avoid interfering with the overlay traffic.

3.2 Deployment Experience

Over the last year, the system has been used by 4 content publishers and ourselves to
broadcast more than 20 real events, the majority of which are conferences and lectures,
accumulating 220 operational hours. In all, the system has been used by over 3600 partici-
pants. We summarize some of our key experience with regard to how successful we were in
attracting publishers and viewers to use the system, the extent of our deployment, and some
of the factors that affected our deployment.
Attracting content publishers: One of the key challenges we face is finding content.
It has been difficult to access popular content such as movies and entertainment, as they
are not freely available and often have copyright limitations. However, we have been more
successful at attracting owners of technical content, such as conferences, workshops and
lectures. Typically event organizers have expressed considerable interest in the use of our
system. However given the wariness toward adopting new technology, convincing an event
organizer to use the system involves significant time and ground-work. The key element of
our success has been finding enthusiastic champions among conference organizers who could
convince their more skeptical colleagues that it is worth their while to try the new technology
even when they are already overwhelmed by all the other tasks that organizing a conference
involves. We have also learned that the video production process is important, both in terms
of cutting costs given that conferences operate with low-budgets, and in terms of dealing
with poor Internet connectivity from the conference sites to the outside world.
Viewer Participation: Table 2 lists the major broadcasts, duration, number of unique
participants, and the peak group size. The broadcast events attracted from 15 to 1600
unique participants throughout the duration and peaked at about 10 to 160 simultaneous
participants. Most of the audience tuned in because they were interested in the content, but
could not attend the events in person. The Slashdot broadcast is different in that wanting
to explore a larger scale and wider audience, we asked readers of Slashdot [36], a Web-based
discussion forum, to experiment with our system. While some of the audience tuned in for

10

SIGCOMM 2002 broadcast 8/2002 9am-5pm (total 141 hosts)
Region North America (101) Europe (20) Oceania (1) Asia (12) Unknown (7)
Background Home (26) University (87) Industry (5) Government (9) Unknown (14)
Connectivity Cable Modem (12) 10+ Mbps (91) DSL (14) T1 (2) Unknown (22)

Slashdot broadcast 12/2002 2pm-10:30pm (total 1316 hosts)
Region North America (967) Europe (185) Oceania (48) Asia (8) Unknown (108)
Background Home (825) University (127) Industry (85) Government (80) Unknown (199)
Connectivity Cable Modem (490) 10+ Mbps (258) DSL (389) T1 (46) Unknown (133)
NAT NAT (908) Public (316) Firewall (92)

Table 3: Host distributions for two broadcast events, excluding waypoints, shown only for a
portion of the broadcast.

the content, others tuned in because they were curious about the system.
While our deployment has been successful at attracting thousands of users, the peak

group sizes in our broadcasts have been relatively low with the largest broadcast having a
peak size of about 160. One possible explanation for this is that the technical content in
these broadcasts fundamentally does not draw large peak group sizes. Another possibility is
that users do not have sufficient interest in tuning in to live events, and prefer to view video
archives. Our ongoing efforts to draw larger audience sizes include contacting non-technical
organizations, and incorporating interactive features such as questions from the audience to
the speaker.

We wish to emphasize that our limited operational experience with larger group sizes
has been constrained by the lack of appropriate content, rather than due to specific known
limitations of our system. We have had encouraging results evaluating our system in Emu-
lab [42] using 1020 virtual nodes, multiplexed over 68 physical nodes, as well as simulation
environments with over 10,000 nodes. Our hope is to use the workloads and traces of en-
vironment dynamics, resources and diversity from our broadcasts to design more realistic
simulations and emulations in the future.
Diversity of Deployment: The diversity of hosts that took part in two of the large
broadcasts (SIGCOMM 2002 and Slashdot), excluding waypoints, can be seen from Table 3.
The deployment has reached a wide portion of the Internet - users across multiple continents,
in home, academic and commercial environments, and behind various access technologies.
We believe this demonstrates some of the enormous deployment potential of overlay multicast
architectures - in contrast, the usage of the MBone [4] was primarily restricted to researchers
in academic institutions.
Decoupling development version from deployment version: One of the challenges
associated with operational deployment is the need for robust, well-tested and stable code.
Bugs can not only affect the performance of a broadcast, but can also significantly lower
our credibility with event organizers championing our cause. This requires us to adopt
extensive testing procedures using Emulab [42], Planetlab [28], and Dummynet [33] before
code is marked ready for deployment. Further, in actual deployment, we typically use an
older version of our system (several months) compared to our development version. One
consequence of this is that even though certain design enhancements may seem trivial to
incorporate, it may take several months before being used in actual broadcasts.
Use of Waypoints: Right from the early stages of our work on Overlay Multicast, we
have been debating the architectural model for deploying Overlay Multicast. On the one

11

U.S. East Coast
U.S. Central

U.S. West Coast
Europe

Asia
Unknown

Figure 4: Snapshot of the overlay tree during Conference 1. Participants, marked by geo-
graphical regions, were fairly clustered. Waypoints, marked by outer circles, took on many
positions throughout the tree.

hand, we have been excited by the deployment potential of purely application end-point
architectures that do not involve any infrastructure support and rely entirely on hosts taking
part in the broadcast. On the other hand, we have been concerned about the feasibility of
these architectures, given that they depend on the ability of participating hosts to support
other children. When it came to actual deployment, we were not in a position to to risk
the success of a real event (and consequently our credibility and the content provider’s
credibility) by betting on such an architecture. Thus, in addition to real participants, we
employed PlanetLab [28] machines, which we call waypoints, to also join the broadcast
(also listed in Table 2). From the perspective of the system, waypoints are the same as
normal participating hosts and run the same protocol – the only purpose they served was
increasing the amount of resources in the system. To see this, consider Figure 4, which
plots a snapshot of the overlay during the Conference broadcast. The shape and color
of each node represents the geographical location of the host as indicated by the legend.
Nodes with a dark outer circle represent waypoints. There are two points to note. First,
the tree achieves reasonable clustering, and nodes around the same geographical location are
clustered together. Second, we see that waypoints are scattered around at interior nodes in
the overlay, and may have used normal hosts as parents. Thus they behave like any other
user, rather than statically provisioned infrastructure nodes. While our use of waypoints so
far has prevented direct conclusions about purely application end-point architectures, we can
arrive at important implications for these architectures leading to reduced use of waypoints
in subsequent broadcasts, as we have done in § 6.

4 Analysis Methodology

We conduct off-line analysis on the performance logs collected from hosts participating in
the broadcasts. Our evaluation and analysis focus on the following questions:
• How well does the system perform in terms of giving good performance to the user?
•What kind of environments do we see in practice? How does the environment affect system

12

performance? Are there quantitative indices we can use to capture environment information?
• Using trace-based simulations on the data, can we ask “what-if” questions and analyze
design alternatives that could have led to better performance?

The data that we use for the analysis is obtained from performance logs collected from
hosts participating in the broadcast. We have instrumented our system with measurement
code that logs application throughput sampled at 1 second intervals, and application loss
rate sampled at 5 second intervals. Note that the sample period is longer for loss rates
because we found from experience that it is difficult to get robust loss measurements for
shorter sampling periods.

We define an entity as a unique user identified by its < publicIP, privateIP > pair.
An entity may join the broadcast many times, perhaps to tune in to distinct portions of
the broadcast, and have many incarnations. The following sections, report analysis on
incarnations unless otherwise stated.

Some of the analysis requires logs to be time synchronized. During the broadcast, when-
ever a host sends a message to the source as part of normal protocol operations (for example,
gossip or probe message), the difference in local offsets is calculated and printed as part of
the log. In the offline analysis, the global time for an event is reconstructed by adding this
offset. We have found that the inaccuracy of not considering clock skew is negligible.

In this section, we provide an overview of our analysis methodology. We present results
from broadcasts in § 5. Finally, in § 6, we quantitatively analyze the performance benefits
that may accrue from key design modifications motivated by our experience.

4.1 User Performance Metrics

We evaluate the performance that individual users observe by measuring their average and
transient network-level performance. In addition, user-level feedback is also presented to
provide a more complete picture of the user experience.
•Average performance is measured as the mean application-level throughput received at
each incarnation. This provides a sense of the overall session performance.
•Transient performance is measured using the application-level losses that users experi-
ence. Using the sampled loss rate from the performance logs, we mark a sample as being a
loss if its value is larger than 5% for each media stream, which in our experience is noticeable
to human perception. We use three inter-related, but complementary metrics: (i) fraction of
session for which the incarnation sees loss; (ii) mean interrupt duration; and (iii) interrupt
frequency.

Fraction of session for which the incarnation sees loss is computed as follows. If an
incarnation participates for 600 seconds, it would have about 120 loss samples. If 12 of those
samples are marked as being a loss, then the incarnation sees loss for 10% of its session.

We define an interrupt to be a period of consecutive loss samples. Interrupt duration is
computed as the amount of time that loss samples are consecutively marked as losses. The
interrupt durations are then averaged across all interrupts that an incarnation experiences.
Note that this metric is sensitive to the sampling period.

Interrupt frequency is computed as the number of distinct interrupts over the incarna-
tion’s session duration, and reflects the dynamicity of the environment. A distinct interrupt

13

is determined to be a consecutive period for which the loss samples are marked as a loss.
This metric is biased by incarnations that have short session durations. For example, if an
incarnation stays for 1 minute, and experiences 2 distinct 5-second interrupts, the interrupt
frequency would be once every 30 seconds.
•User Feedback complements the network-level metrics described above. We encouraged
users to fill in a feedback form and rate their satisfaction level for various quality metrics
such as ease of setup, overall audio and video quality, frequency of stalls, and duration of
stalls. The results are, however, subjective and should be considered in conjunction with the
more objective network-level metrics.
•Additional Metrics to capture the quality of the overlay have also been analyzed. For
example, we have looked at the efficiency of the overlay based on resource usage [9], and
overlay stability based on the rate of parent changes. Due to space limitations, we do not
present these results.

4.2 Environmental Factors

A self-organizing protocol needs to deal with events such as an ancestor leaving, or congestion
on upstream overlay links by making parent changes. Two key factors that affect performance
then are: (i) the dynamicity of the environment; and (ii) the quality of resources (parents)
available in the environment. The more dynamic an environment, the more frequently a
host is triggered to react; the poorer the resources, the longer it could potentially take to
discover a good parent.

4.2.1 Dynamics

The two key aspects of dynamics are: (i) group dynamics; and (ii) dynamics in the network.
We measure group dynamics using mean interarrival time and session duration. We note
however that the membership dynamics and overlay performance may not follow a strict
cause and effect relationship. For example, users that see poor performance may leave, thus
creating more dynamics in the system.

Our measurements are not conducive to summarizing network dynamics in terms of
frequency and duration because of several reasons. First, we have measurements only for
the subset of overlay links chosen and used by the protocol for data transfer. Second, the
measurements could be biased by the protocol’s behavior. For example, the observation
of congestion duration may be shorter than in reality because the protocol attempts to
move away from congestion and stops sampling that path. Instead, we characterize network
dynamics by looking at the causes and location as described in § 4.3.

4.2.2 Environment Resources

Two key factors capture the quality of resources in an environment: (i) outgoing bandwidth
of hosts, which directly bounds the number of children hosts can take; and (ii) the presence
of NATs and firewalls which places connectivity restrictions on parent-child relationships.
In this section, we introduce a metric called the Quality Index to capture the outgoing
bandwidth of hosts, and then extend it to consider NATs and firewalls.

14

Quality Index:

P

P

P

NAT

P

PP

NAT

P

P

P

P

Public only NAT and Public
Inefficient structure

NAT and Public
Connectivity-optimal structure

8/3 = 2.7
(a)

6/3 = 2.0
(b)

8/3 = 2.7
(c)

Figure 5: Example of quality index computation.

We define the Quality Index as the ratio of the number of receivers that the members in
the group could potentially sustain to the number of receivers in the group for a particular
source rate. By number of hosts that can be potentially sustained, we mean the sum of
the existing hosts in the system and the number of free slots in the system. For example,
consider Figure 5(a), where each host has enough outgoing bandwidth to sustain 2 children.
The number of free slots is 5, and the Quality Index is (5 + 3)/3 = 8/3. Further, for a given
set of hosts and out-going bandwidth, the Quality Index is the same for any overlay tree
constructed using these hosts. A Quality Index of 1 indicates that the system is saturated,
and a ratio less than 1 indicates that not all the participating hosts in the broadcast can
receive the full source rate. As the Quality Index gets higher, the environment becomes less
constrained and it becomes more feasible to construct a good overlay tree.

We have extended the definition of Quality Index to incorporate the connectivity con-
straints of NATs and firewalls, by only considering free slots available for NAT hosts. For
example, in Figure 5(b), the number of slots available for NAT hosts is 3, and the Quality
Index is 6/3. However, we note that the Quality Index not only depends on the set of hosts,
but also becomes sensitive to the structure of the overlay for that set of hosts. Thus, while
Figure 5(c) has the same set of hosts as Figure 5(b), we find the number of free slots for
NATs is 5 and the Quality Index is 8/3.

We observe that the optimal structure in terms of accommodating NATs is one where
public hosts preferentially choose NATs as parents. Based on this observation, the optimal
Quality Index for a set of hosts involving NATs and firewalls is difined as S/N , where
S = Spublic +Min(Snat, Npublic). Here, Spublic and Snat are the maximum number of children
that can be supported by the public and NAT hosts, Npublic is the number of receivers that
are public hosts and N is the total number of receivers. Figure 5(c) is an optimal structure
for the set of hosts, and it can be verified that the formula confirms to the result stated
above.

We wish to close with two practical issues that must be borne in mind with the Quality
Index . First, it captures only the availability of resources in the environment, but does
not account for factors such as performance of Internet paths. Also, the Quality Index is
computed assuming global knowledge, but in practice, a distributed protocol may not be
able to use the resources as optimally as it could have.

15

4.3 Loss Diagnosis

When evaluating a self-organizing protocol, we need to distinguish between losses that could
possibly be fixed by appropriate self-organization techniques from the losses that are fun-
damental to the system (i.e. those caused by access link capacity limitations, trans-oceanic
bottleneck link congestions and local congestions). Further, we are interested in identifying
the location of losses in the overlay tree, and attribute causes to the loss. We now summarize
steps in our loss diagnosis methodology below:
• Identifying Root-Events: If a host sees bad performance, then all of its descendants
downstream see bad performance. Our first step filters out losses at descendants, and isolates
a set of “root-events”. If a host sees losses at a particular time, we determine whether its
parent saw losses in a 5 second window around that time. This correlation relies on the time
synchronization mechanism that we described earlier in the section.
• Identifying Network Events: Next, we classify the losses between the host and its parent
based on cause. In our system, there are potentially two primary causes: (i) parent leave
or death, and (ii) network problems (congestion or poor bandwidth) between the parent
and child. There could be other miscellaneous causes such as host with slow processors
and implementation bugs. Parent leave or death events are straightforward to identify from
the logs. Hosts with slow processors are detected by abnormal gaps in time-stamps of
operations that log messages at periodic intervals. Implementation bugs are revealed by
abnormal patterns we detect during manual verification and analysis of logs. Thus, after a
detailed elimination process and exhaustive manual verification, we classify the remaining
losses that we are not able to attribute to any known cause as due to network problems.
• Classifying constrained hosts: Network losses can occur at several locations: (i) local to
the child where a parent change is not needed; or (ii) local to the parent, or on the link
between parent and child. As a first step, we identify hosts that see persistent losses near
it. Hosts in this category include those that never see the full source rate throughout the
session, or hosts that burst up to the full source rate for very short periods, but are not
able to sustain the bandwidth for the entire duration. We identify these hosts using the
following heuristic. If a host has seen losses for over 80% of the session, all of which are
“root losses”, and has tried at least 5 distinct parents during the session, then we decide the
host is bandwidth constrained. Inherent here is the assumption that the protocol is doing
a reasonable job in parent selection. This heuristic works well in environments with higher
Quality Index. Finally, we manually verify these hosts and look for other evidence they are
constrained (for example, location across a trans-oceanic link, names indicating they are
behind wireless links etc.).
• Classifying congestion losses: The remaining losses correspond to hosts that usually see
good performance but see transient periods of bad performance. If its siblings experience loss
at around the same time, it is evidence that the loss is near the parent and not near a child;
if a child has made several parent changes during an extended loss period, it is evidence that
the loss is near the child. For the events that we are unable to classify, we label them as
having “unknown location”.

16

Event Duration Incarnations Mean Session Incarnation Session Entity Session % Eligible Parents
(hours) Excluding Interarrival Duration (minutes) Duration (minutes)

Waypoints Time (sec) Mean Median Mean Median All Public
SIGCOMM 2002 8 375 83 61 11 161 93 57% 57%
SIGCOMM 2003 9 102 334 29 2 71 16 46% 17%
Lecture 1 1 52 75 12 2 26 19 62% 33%
Lecture 2 2 72 120 31 13 50 53 44% 21%
Lecture 3 1 42 145 31 7 42 31 73% 43%
Slashdot 8 2178 17 18 3 11 7 19% 7%

Table 4: Summary of group membership dynamics and composition for the 6 larger broad-
casts using the system.

5 Analysis Results

We present results from 6 of our larger broadcasts, 5 of which were conference/lecture-type
broadcasts, and the other being Slashdot . For multi-day events, such as SIGCOMM 2002
and 2003, we analyzed logs from one day in the broadcast. For Slashdot, we present analysis
results for the first 8 hours. In this section, we will present environment characterizations and
performance results of the broadcasts. The analysis will indicate strong similarities in the
environment for the conference/lecture-type broadcasts. However, they differ significantly
from Slashdot. When we wish to illustrate a more detailed point, we use data from the
SIGCOMM 2002 and Slashdot broadcasts. The SIGCOMM 2002 broadcast is one of the
largest conference/lecture-type broadcasts, and is representative of these broadcasts in terms
of application performance and resources.

5.1 Environment Dynamics

Table 4 lists the mean session interarrival time in seconds for the 6 broadcasts in the fourth
column. For the five broadcasts of conferences and lectures, the mean interarrival time was
a minute or more, whereas the interarrival time for Slashdot was just 17 seconds. Slashdot
has the highest rate of group dynamics compared to all other broadcasts using our system.
Note that the session interarrival times fit an exponential distribution.

Two different measures of session duration are listed in Table 4: individual incarnation
duration and entity duration (cumulative over all incarnations) which captures the entity’s
entire attention span. For entity session duration, again, we find that all 5 real broadcasts of
conferences and lectures have a mean of 26 minutes or more, and a median of 16 minutes or
more. In the SIGCOMM 2002 broadcast, the median session duration was 1.5 hours which
corresponds to one technical session in the conference. To contrast, the Slashdot audience
has a very short attention span of 11 and 7 minutes for the mean and median. This indicates
that the Slashdot audience may have been less interested in the content. The incarnation
session duration also follows a similar trend with shorter durations. Note that SIGCOMM
2003 and Lecture 1 have very short median incarnation session durations. This is caused by
1 or 2 entities testing the system out, joining and leaving in less than a minute. Once we
removed such entities, the median went up to 12 minutes or more, bringing it closer to the
other 3 conferences and lectures.

17

0

1

2

3

4

5

03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

Q
ua

lit
y

In
de

x

Time Since Broadcast Start (Hours)

SIGCOMM 2002
Slashdot(Bandwidth)

Slashdot

Figure 6: Quality Index as a function of time for (a) SIGCOMM 2002, (b) Slashdot with
bandwidth constraint, (c) Slashdot with bandwidth and connectivity constraints.

5.2 Environment Resources

We look at the percentage of incarnations in the system that were eligible as parents, the
last 2 columns in Table 4. The 5 conference and lecture broadcasts have the same trend,
with 44% or more incarnations that can serve as parents. On the other hand, only 19%
of incarnations could be parents in Slashdot. Further, when we consider the fraction of
public hosts that could be parents, we find this ranges from 17−57% for the conference-style
broadcasts, but is just 7% for the Slashdot broadcast. This indicates that there were much
less available resources in the system in the Slashdot broadcast. Note that we did not have
NAT/firewall support in the SIGCOMM 2002 broadcast.

Figure 6 depicts the quality index of the system as a function of time of the broadcast.
The top and the lowest curves represent the Quality Index for the SIGCOMM 2002 and
Slashdot broadcasts, and are consistent with the definition in § 4.2.2. We note that the lowest
curve corresponds to the actual overlay tree that was constructed during the broadcast. The
middle curve, Slashdot (Bandwidth) considers a hypothetical scenario without connectivity
constraints (that is, all NAT/firewall hosts are treated as public hosts). The SIGCOMM
2002 broadcast has a quality index of 4, potentially enough to support 4 times the number
of members. In contrast, the Slashdot (Bandwidth) has a quality index of 2, and Slashdot
has a quality index that is barely over 1. Thus, not only was the distribution of out-going
bandwidth less favorable in the Slashdot broadcast, but also the presence of connectivity
constraints made it a much harsher environment.

5.3 Performance Results

The previous analysis indicates that 5 of our broadcasts have similar resource distributions
and dynamics patterns, but the Slashdot environment was more diverse and more dynamic.
This section evaluates how the system performs.

Figure 7 plots the cumulative distribution of mean session bandwidth, normalized to the
source rate for the 6 broadcasts. Five of the broadcasts are seeing good performance with
more than 90% of hosts getting more than 90% of the full source rate in the SIGCOMM
2002, Lecture 2, and Lecture 3 broadcasts, and more than 80% of hosts getting more than
90% of the full source rate in the SIGCOMM 2003 and Lecture 1 broadcasts. In the Slashdot

18

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
B

an
dw

id
th

 R
at

io
 (n

or
m

al
iz

ed
 to

 s
ou

rc
e

ra
te

)

Cumulative Percent of Receivers (%)

SIGCOMM 2002
SIGCOMM 2003

Lecture 1
Lecture 2
Lecture 3
Lecture 4
Slashdot

Figure 7: Cumulative distribution of mean session bandwidth (normalized to the source rate)
for the 6 larger broadcasts.

Setup Audio Video
ease Quality Quality

SIGCOMM 2002 95% 92% 81%
Slashdot 96% 71% 66%

Table 5: Summary of user feedback for two broadcast events. Each number indicates the
percentage of users who are satisfied in the given category.

broadcast, fewer hosts, 60%, are getting the same performance of 90% of the full source rate.
To better understand the transient performance, and performance of different stream

qualities, we zoom in on the SIGCOMM 2002 , which we will refer to as Conference , and
Slashdot broadcasts. Figure 8 depicts the cumulative distribution of the fraction of time
all incarnations saw more than 5% packet losses in all three streams in Slashdot and the
Conference broadcast, for incarnations that stay for at least 1 minute. For the Conference
broadcast, the performance is good. Over 60% of the hosts see no loss in audio and low
quality video, and over 40% of the hosts see no loss in high quality video. Further, over 90%
of the hosts see loss for less than 5% of the session in the audio and low quality streams,
and over 80% of the hosts see loss for less than 5% of the session in the high quality stream.
We will further analyze the performance of the hosts that are seeing the worst performance
in § 5.4 and demonstrate that these are mostly hosts that are fundamentally constrained
by their access bandwidth. For the Slashdot broadcast on the other hand, the low quality
video and audio streams see reasonable performance, but the performance of the high quality
stream is much less satisfactory. Over 70% of the users see loss for less than 10% of the session
in low quality video, but only 50% of users see loss for less than 10% of the session for high
quality video. Note that the audio and low quality streams are seeing better performance
than the high quality because of the use of the priority buffer described in § 2.2. For sessions
with a high loss rate of high quality video, the low quality one was actually displayed to the
user.

Figure 9 depicts the cumulative distribution of the duration of interrupts seen by each
incarnation. We find that the interrupt duration is almost identical for 5 curves: all 3 streams
in Conference, and low quality video and audio in Slashdot. However, the high quality video
in Slashdot sees a pronounced higher interrupt duration. More than 70% of hosts see a mean
interrupt duration of less than 10 seconds, and 90% of hosts see a mean interrupt duration of

19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Fr
ac

tio
n

of
 D

ur
at

io
n

w
ith

 L
os

s

Cumulative Percent of Receivers (%)

Slashdot Audio
Slashdot Low
Slashdot High

Conference Audio
Conference Low
Conference High

Figure 8: Cumulative distribution of frac-
tion of session time with more than 5%
packet loss of hosts in the two broadcasts.

1

10

100

1000

0 10 20 30 40 50 60 70 80 90 100

M
ea

n
In

te
rr

up
t D

ur
at

io
n

(s
ec

on
ds

)

Cumulative Percent of Receivers (%)

Slashdot Audio
Slashdot Low
Slashdot High

Conference Audio
Conference Low
Conference High

Figure 9: Cumulative distribution of
mean interrupt duration.

less than 25 seconds for all 5 streams. However, 90% of hosts see a mean interrupt duration
of less than 50 seconds for the Slashdot high quality stream.

We have also analyzed the cumulative distribution of the frequency of interrupts seen
by each incarnation. We find that the interrupt frequency is higher for Slashdot, probably
reflecting the more dynamic environment. For example, in the Conference broadcast over
80% of hosts see an interrupt less frequent than once in five minutes and 90% see an interrupt
less frequent than once in two minutes. In Slashdot, 60% of hosts see an interrupt less
frequent than once in five minutes and 80% see an interrupt less frequent than once in two
minutes.

User Feedback: Table 5 summarizes statistics from a feedback form users were en-
couraged to fill when they left the broadcast. Approximately 18% of users responded and
provided feedback. Most users were satisfied with the overall performance of the system, and
more satisfied with the overall performance in the Conference broadcast, which is consistent
with the network level metrics in Figures 7 and 8.

5.4 Loss Diagnosis

Figures 8 and 9 show that for the Conference broadcast, while most users saw good perfor-
mance, there is a tail which indicates poor performance. To better understand the tail, we
analyze the data using the loss diagnosis methodology presented in § 4.3. Figure 10 shows
the breakdown of all loss samples across all hosts. We find that almost 51% of losses are not
fixable by self-organization. 49% corresponded to hosts that were bandwidth constrained,
while 2% of losses belonged to hosts that were normally good, but experienced network
problems close to them for a prolonged period. 6% of losses corresponded to network events
that were fixable by adaptation, while 18% of losses corresponded to network events that we
were not able to classify. Manual cross-verification of the tail revealed about 30 incarnations
that were marked as constrained hosts. This corresponded to about 17 distinct entities. Of
these, 5 are in Asia, 1 in Europe, 3 behind wireless links, 1 behind a LAN that was known
to have congestion issues, and 7 behind DSL links.

Finally, Figure 10 indicates that dynamics in the network is responsible for significantly

20

May not be
fixable via
self-org.
18%

Problems at
ancestors

Fixable 31%

Network congestion near
broadcast source (rare)

Parent leave

Not fixable via
self-organization

51%

Network
congestion
(unknown
location)

Host is bandwidth
constrained

Network congestion near host

Network
congestion
near parent

Figure 10: Loss diagnosis for Conference.

more losses than group dynamics. In some cases, even well-provisioned paths see prolonged
periods of congestion. As an anecdotal example, we observed that a gigabit link between
a U.S. academic institution and the high-speed Internet2 backbone that typically provides
good consistent performance, had a congestion epoch that lasted up to 3 minutes. Both
observations are consistent with other broadcasts including Slashdot.

6 Lessons Learned

Our experience over the last year, substantiated with data and analysis, has pointed us
toward four key design lessons that are guiding future refinements of our system.

Our first lesson sheds light on the potential of purely application end-point based overlay
multicast architectures that rely entirely on the hosts taking part in the broadcast. As
discussed in § 3.2, our deployment used waypoints, additional hosts that help increase the
resources in the system but were otherwise no different than normal clients. We analyze how
important the resources provided by waypoints was to the success of our broadcasts.

Our next three lessons deal with techniques that can enable good performance in envi-
ronments with low Quality Index, even in the absence of waypoints. The analysis for these
lessons assume that the resources provided by waypoints is unavailable, and consequently a
purely application end-point architecture.

Lesson 1: There is opportunity to reduce the dependence on waypoints and use them in an
on-demand fashion.

In order to understand whether or not waypoints are necessary to the success of a broad-
cast, we look at Figure 11 which plots the Quality Index in the Conference and Slashdot
broadcasts, with and without waypoints. The Conference broadcast had enough capacity
to sustain all hosts even without waypoint support. Furthermore, most of the broadcasts,
similar to the Conference broadcast, are sustainable using a purely application end-point
architecture. In one of the lecture broadcasts, all the waypoint left simultaneously in the
middle of the broadcast due to a configuration problem, and we found that the system was
able to operate well without the waypoints.

On the other hand, we find that the connectivity constraints in the Slashdot broadcast
resulted in a low Quality Index that occasionally dipped below 1 in Figure 11. This indicates

21

0

1

2

3

4

5

03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

Q
ua

lit
y

In
de

x

Time Since Broadcast Start (Hours)

Conference with Waypoints
Conference without Waypoints

Slashdot with Waypoints
Slashdot without Waypoints

Figure 11: Quality Index as a function of time with and without waypoint support.

that it was not feasible to construct an overlay among all participating hosts that could
sustain the source rate. Dealing with such environments can take on two complementary
approaches (i) design techniques that can enable good performance in purely application
end-point architecture, even in the absence of waypoints (which forms the thrust of the
subsequent lessons in this section), or (ii) use a waypoint architecture, with the insight
that waypoints may not be needed for the entire duration of the broadcast, and can be
invoked on-demand. For ease of deployment, our objective is to explore both approaches
and gradually decrease the dependence on waypoints, using them as a back-up mechanism,
only when needed.

We note that in the long-term, waypoint architectures may constitute an interesting re-
search area in their own right, being intermediate forms between pure application end-point
architectures and statically provisioned infrastructure-centric solutions. The key aspect that
distinguishes waypoints from statically provisioned nodes is that the system does not depend
on these hosts, but leverages them to improve performance.

Lesson 2: Exploiting heterogeneity in node capabilities through differential treatment is crit-
ical to improve the performance of the system in environments with low Quality Index.
Further, there is considerable benefit to coupling such mechanisms with application-specific
knowledge.

If the Quality Index dips below 1, the system must reject some hosts or degrade applica-
tion quality. In this section, we evaluate performance in terms of the fraction of hosts that
are rejected, or see lower application quality. We consider three policies. In the First-Come-
First-Served (FCFS) policy that is currently used in our system, any host that is looking for
a new parent, but finds no unsaturated parent is rejected. In the Contributor-Aware policy,
the system distinguishes between two categories of hosts: contributors (hosts that can sup-
port children), and free-riders (hosts that cannot support children). A contributor C that is
looking for a new parent may preempt a free-rider (say F). C can either accommodate F
as a child, or kick it out of the system if C is itself saturated. This policy is motivated by
the observation that preferentially retaining contributors over free-riders can help increase
overall system resources. Finally, we consider Rate-Adaptation where a parent reduces the
video rate to existing free-riders in order to accommodate more free-riders. For example, a

22

0

500

1000

1500

2000

2500

02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00

C
um

ul
at

iv
e

N
um

be
r o

f R
ej

ec
te

d
H

os
ts

Time Since Broadcast Start (Hours)

All Joins
FCFS

Contributor-Aware
Contributor-Aware + Rate Adaptation

Figure 12: Number of rejected hosts under three different protocol scenarios in the simulated
Slashdot environment.

parent can stop sending the high quality video (300 kbps) to one child, and in return, support
three additional 100 kbps children. This policy is an example that not only differentially
treats hosts based on their capabilities, but also exploits application knowledge.

We evaluate the potential of these policies by conducting a trace-based simulation using
the group membership dynamics pattern from the Slashdot broadcast. We retain the same
constitution of contributors and free-riders, but remove the waypoints from the group. We
simulate a single-tree protocol where each receiver greedily selects an unsaturated parent,
and we assume global knowledge in parent selection. If there is no unsaturated parent in the
system, then we take action corresponding to the policies described above. Figure 12 shows
the performance of the policies. We see that throughout the event, 78% of hosts are rejected
using the FCFS policy. Contributor-Aware policy can drastically reduce the number of
rejections to 11%. However, some free-riders are rejected because there are times when the
system is saturated. With the Rate Adaptation policy however, no free-rider is rejected.
Instead, 28% of the hosts get degraded video quality for some portion of the session.

Our results demonstrate the theoretical potential of contributor-aware rejection and rate
adaptation. A practical design has to deal with many issues, for example, robust ways of au-
tomatically identifying contributors (see next lesson), techniques to discover the saturation
level of the system in a distributed fashion, and the trade-offs in terms of larger number of
structure changes that preemption could incur. We are currently in the process of incorpo-
rating these policies in our design and evaluating their actual performance.

Lesson 3: It is imperative to design techniques that can automatically infer the capabilities
of nodes. In particular, techniques are needed for inferring the outgoing access bandwidth of
nodes

As the previous lesson indicates, it is important to design protocol techniques that dif-
ferentially treat nodes based on their contributions. An issue then is determining the con-
tribution level of a node to the system, and in particular, determinining the outgoing access
bandwidth of a node. In our current system, the user is asked if his access bandwidth has
a 10Mbps up-link to the Internet to help determine whether the host should have children
(§ 2.1). This approach is susceptible to free-loaders[35], where a user declares that he has

23

10+Mbps Below 10Mbps Total
User truthful 11.1% 60.8% 71.9%
User lied 5.4% 4.9% 10.3%
User inconsistent 4.3% 13.5% 17.8%
Total 20.8% 79.2% 100.0%

Table 6: Accuracy in determining access bandwidth based on user input in Slashdot.

0

200

400

600

800

1000

1200

03:5403:54 03:5503:55 03:56

R
ec

ei
ve

d
B

an
dw

id
th

 (k
bp

s)

Time Since Broadcast Start (Hours)

0

1

2

3

4

N
um

be
r o

f c
hi

ld
re

n

received bandwidth
number of children

Figure 13: An example of a misconfigured DSL host taking children, causing poor perfor-
mance to itself and its children.

less resources than he really does. However, an equally damaging problem in the context of
Overlay Multicast is when a user declares he has more resources than he does. To see this,
consider Figure 13 which depicts the performance of a DSL host that lied about having a
10Mbps up-link to the Internet, during the Slashdot broadcast. Whenever the host accepts
a child, it affects not only the child’s performance, but also its own performance. Further,
a similar problem arises when a host can support less children (e.g. 4) than it claimed (e.g.
6). In a future design that prioritizes hosts that contribute more (Lesson 2), these effects
can get further exacerbated.

To appreciate how reliable users were in selecting the correct access bandwidth in the
Slashdot broadcast, consider Table 6. Each column represents a true access bandwidth,
and each row represents a particular type of user behavior. “User Inconsistent” refers to
users that had joined the group multiple times during the broadcast, and had selected both
10+Mbps option and lower than 10 Mbps option between consecutive joins, perhaps trying
to figure out whether the choice yielded any difference in video quality. We determined the
real access bandwidth using an off-line log analysis involving the following techniques: (i)
DNS name, (ii) the TCP bandwidth of the upload log, (iii) online bottleneck bandwidth
measurement, and (iv) Nettimer [20] from our university to target hosts. Since no single
methodology is 100% accurate, we correlate results from all these techniques. We omit the
details for lack of space.

From the table, we see that while 20.8% of hosts were behind 10Mbps links, only about
half of them (11.1% of total) were truthful. Our trace-based simulation on the Slashdot log
indicates that on average, this results in a 20% increase in Quality Index . Further, we find
that while 79.2% of the users were behind links lower than 10Mbps, about 4.9% chose the
higher option or were being inconsistent (13.5%) about their connectivity.

We have been experimenting with techniques to automatically detect the outgoing ac-
cess bandwidth of hosts. While access bandwidth measurement has been well studied in

24

0

0.5

1

1.5

2

2.5

03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

Q
ua

lit
y

In
de

x

Time Since Broadcast Start (Hours)

Slashdot(TCP)
Hypothetical Slashdot(UDP)

Figure 14: Quality Index comparison of two connectivity solutions for NAT/firewall: (i)
Slashdot (TCP), (ii) Hypothetical Slashdot (UDP).

the literature [17, 11, 20], many of them are not applicable because the measurement code
must run at user-level and with coarse application-level time-stamps. We have experimented
using traceroute to find the local network topology, and ping of different sizes to estimate
bottleneck bandwidth. We have also been experimenting with techniques that passively
monitor the performance of parents and automatically learn their access bandwidth. These
techniques show promise and we hope to deploy them in the future.

Lesson 4: Addressing the connectivity constraints posed by NATs and Firewalls may require
using explicit NAT/firewall-aware heuristics in the protocol.

In light of our experience, NATs and firewalls can constitute an overwhelming fraction
of a broadcast (for example, 50%-70% in Slashdot), and thus significantly lower the Quality
Index . Clearly, using UDP as the transport protocol could improve the situation by increas-
ing the amount of pair-wise connectivity, particularly connectivity between Full-Cone NATs.
However, a less obvious improvement, which we briefly presented in § 2.4 is to make the
self-organizing protocol explicitly aware of NAT/firewalls. In particular public hosts should
preferentially choose NATs as parents, leaving more resources available for NATs/firewalls.

We now evaluate the potential of these two design improvements to help determine
whether or not the additional complexity is worth the performance gains. Figure 14 shows
the Quality Index for the system for the various design alternatives as a function of time,
again omitting waypoint hosts. The lowest curve corresponds to the optimal quality index
that can be achieved with a TCP-based protocol. The topmost curve corresponds to the
optimal quality index with UDP and a NAT/firewall-aware self-organizing protocol. We see
a significant increase of 74%. The combination of the two techniques above can significantly
improve the Quality Index . Both techniques are being implemented in the latest version of
our system and will soon be used for upcoming broadcasts.

7 Related Work

In this section, we discuss how our work relates to (i) other existing Internet broadcast
systems and (ii) work in the Overlay Multicast community.

25

Broadcast Systems: The MBone [4] Project, and its associated applications such as
vic [24], vat [18], and MASH [23] made a great effort to achieve ubiquitous Internet broad-
casting However, the MBone could only touch a small fraction of Internet users (mostly
networking researchers) due to the fundamental limitations of IP Multicast and dependence
on the special MBone infrastructure. In contrast, our system has over a short time already
reached a wide range of users, including home users behind a range of access technologies,
and users behind NATs and firewalls.

Commercial entities, such as Akamai [2] and Real Broadcast Network [31], already pro-
vide Internet broadcasting as a charged service. They rely on dedicated, well-provision
infrastructure nodes to replicate video streams. Such an approach has some fundamental
advantages such as security and stable performance. However, these systems are viable only
for larger-scale publishers, rather than the wide-range of low budget Internet broadcasting
applications we seek to enable.

Recently, several peer-to-peer broadcast systems have been built by commercial entities
[3, 6, 40] and non-profit organizations[26]. To our knowledge, many of these systems focus
on audio applications which have lower bandwidth requirements. However, given the limited
information on these systems, we are unable to do a detailed comparison.
Overlay Multicast: Since overlay multicast was first proposed four years ago many
efforts [14, 9, 19, 7, 21, 30, 39, 22, 34, 25, 41, 10, 5] have advanced our knowledge on protocol
construction by improving performance and scalability. Most this work has been protocol-
centric , and has primarily involved evaluation in simulation, and Internet testbeds such as
PlanetLab. In contrast, this paper adopts an application-centric approach, which leverages
experience from actual deployment to guide the research. We address a wide range of issues
such as support for heterogeneous receivers, and NATs and firewalls, which are not typically
considered in protocol design studies. To our knowledge this paper is among the first reports
on experience with a real application deployment based on overlay multicast involving real
users watching live content. We believe our efforts complements ongoing research in overlay
multicast, by validation through real deployment, and providing unique data, traces and
insight that can guide future research.

The overlay protocol that we use is distributed, self-organizing and performance-aware.
We use a distributed protocol, as opposed to a centralized protocol [27, 25], to minimize
the overhead at the source. The self-organizing protocol constructs an overlay tree amongst
participating hosts in a tree-first manner, similar to other protocols [19, 41, 14], motivated by
the needs of single source applications. In contrast there are protocols that construct a richer
mesh structure first and then construct a tree on top [9, 7], or construct DHT-based meshes
using logical IDs and employ a routing algorithm to construct a tree in the second phase [22].
Such protocols are typically designed for multi-source or multi-group applications.

In our protocol, members maintain information about hosts that may be uncorrelated to
the tree, in addition to path information, while in protocols like Overcast [19] and NICE [34],
group membership state is tightly coupled to the existing tree structure: While Yoid [14] and
Scribe [22] also maintain such information, the mechanisms they adopt are different. Our
system uses a gossip protocol adapted from [32], while Yoid builds a separate random control
structure called the mesh, and Scribe constructs a topology based on logical identifiers.

Overcast [19] and Narada [9] discuss adaptation to dynamic network metrics such as

26

bandwidth. Our experience indicates that a practical deployment must consider several
details such as dynamic tuning of network detection time to the resources available in the
environment, consider hosts that cannot sustain the source rate, and consider VBR streams,
and indicate the need for further research and understanding in this area.

Recent work such as CoopNet [25], and Splitstream [5] has demonstrated significant
benefits by tightly coupling codec-specific knowledge and overlay design. In these works,
the source uses a custom codec to encode the multimedia stream into many sub-streams
using multiple description coding, and constructs an overlay tree to distribute each sub-
stream. This approach not only increases overall resiliency of the system, but also enables
support for heterogeneous hosts by having each receiver subscribe to as many layers as its
capacity allows. While we believe this a great direction for future research, our design has
been influenced by practical system constraints on an immediately deployable operational
system, and our desire to interoperate with commercial media players and a wide range of
popular codecs. We hope to leverage ideas from this approach as the research attains greater
maturity, and when custom codecs become available.
NATs and Firewalls: Several efforts such as UPnP [1] and STUN [16] focus their efforts in
enabling connectivity of NATs and firewalls. Our focus in this paper has been on the interplay
between the application and NAT/firewall support. In particular, we have examined how
the connectivity constraints imposed by NATs and firewalls can impact overlay performance,
and on issues related to the integration of protocol design with NATs and firewalls. While
Yoid [14] supports NATs and firewalls, it supports such hosts as children only, whereas we
try to use NATs as parents when possible. We believe this is one of the first reports on
experience with an overlay multicast system in the presence of NATs and firewalls.

8 Summary and Future Work

In this paper, we have reported on our operational experience with a broadcast system
based on Overlay Multicast. To our knowledge this is among the first reports on experience
with real application deployment based on Overlay Multicast, involving real users. Our
experience has included several positives, and taught us important lessons both from an
operational deployment stand-point, and from a design stand-point.

Our system is satisfying the needs of real content publishers and viewers, and demon-
strating the potential of Overlay Multicast as a cost-effective alternative for enabling Internet
broadcast. The system is easy to use for both publishers and viewers. We have success-
fully attracted over 3600 users from diverse Internet locations to use our system. However,
we have had limited success in attracting larger scales of participation, primarily because
of the difficulty in getting access to non-technical content. Our experience with several
conference/lecture-type broadcasts indicate that our system provides good performance to
users. In such environments, we consistently observe that over 80−90% of the hosts see loss
for less than 5% of their sessions. Further, hosts that perform poorly are typically bandwidth
constrained hosts. Even in a more extreme environment with a low Quality Index , users see
good performance in audio and low quality video.

Getting the system deployed has frequently required finding an enthusiastic champion of
the technology to convince their colleagues to use it. This has raised the stakes to ensure the

27

success of a broadcast, which could in turn trigger further interest in the use of the system.
Consequently, we have needed to use stable and well-tested code in our deployment, rather
than code that implements the latest performance enhancements. Another consequence has
been our use of waypoints, additional hosts that help increase the resources in the system,
but were otherwise no different than normal clients. The use of waypoints has been motivated
by the need to balance between conflicting goals - on the one hand we want to understand
the resource availability in purely application end-point architectures; on the other hand we
need to have a series of successful broadcasts in the first place before such knowledge can be
obtained.

Our subsequent analysis has investigated the potential of purely application end-point
architectures , that do not rely on the use of waypoints. Our analysis both show the promise
for such architectures, but also the need to incorporate additional key design elements.
For most of our broadcasts, there is sufficient bandwidth resources to enable a solution
purely within the application end-point framework. In broadcasts with lower Quality Index,
techniques that exploit the heterogeneity in node capabilities through differential treatment
and application-specific knowledge bear significant promise. Our broadcasts have also forced
us to better appreciate the connectivity constraints posed by NATs and firewalls, and have
led us to investigate explicit NAT/firewall-aware heuristics in the protocol. While our lessons
have been derived in the context of our system, we believe they are of broader applicability
to the community as a whole.

With the experience accumulated over the last year, we have set several milestones for
the next 1 year horizon. Our milestones include:
• At a design level, we hope to incorporate some of the design refinements described above
which can enable better performance in purely application end-point architectures. Our hope
is to gradually minimize dependence on waypoints, through the use of on-demand waypoint
invocation mechanisms.
• At an operational level, we hope to pursue wider and larger-scale deployment by attracting
more publishers of both technical and non-technical content to the system, and convincing
them to conduct their own broadcasts, incorporating interactivity features that might at-
tract larger scales in synchronous applications, and encouraging other groups to run the
broadcasts. Finally, while we have been conducting studies on the scalability of the system
using emulations and simulations, we hope to gain deployment experience with larger peak
group sizes.

Acknowledgements

We thank James Crugnale, Brian Goodman, Tian Lin, Nancy Miller, Jiin Joo Ong, Chris
Palow, Vishal Soni, and Philip Yam for the help with the implementation and experimenta-
tion of the broadcast system. We also thank several event organizers who are early adopters
of our system, and broadcast their events over the Internet.

28

References
[1] Understanding Universal Plug and Play. Microsoft White Paper.

[2] Akamai. http://www.akamai.com/.

[3] Allcast. http://www.allcast.com/.

[4] S. Casner and S. Deering. First IETF Internet audiocast. ACM Computer Communication
Review, pages 92–97, 1992.

[5] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. SplitStream:
High-bandwidth Content Distribution in Cooperative Environments. In Proceedings of SOSP,
2003.

[6] Chaincast. http://www.chaincast.com/.

[7] Y. Chawathe. Scattercast: An architecture for Internet broadcast distribution as an infras-
tructure service. Fall 2000. Ph.D. thesis, U.C. Berkeley.

[8] Y. Chu, S.G. Rao, S. Seshan, and H. Zhang. Enabling Conferencing Applications on the
Internet using an Overlay Multicast Architecture. In Proceedings of ACM SIGCOMM, August
2001.

[9] Y. Chu, S.G. Rao, and H. Zhang. A Case for End System Multicast. In Proceedings of ACM
Sigmetrics, June 2000.

[10] J. Albrecht D. Kostic, A. Rodriguez and A. Vahdat. Bullet: High Bandwidth Data Dissemi-
nation Using an Overlay Mesh. In Proceedings of SOSP, 2003.

[11] A. B. Downey. Using pathchar to estimate internet link characteristics. In Measurement and
Modeling of Computer Systems, pages 222–223, 1999.

[12] End system multicast toolkit and portal. http://esm.cs.cmu.edu/.

[13] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Multicast Routing in Internetworks and
Extended LANs. In Proceedings of the ACM SIGCOMM, August 2000.

[14] P. Francis. Yoid: Your Own Internet Distribution, http://www.aciri.org/yoid/. April 2000.

[15] R. Frederick H. Schulzrinne, S. Casner and V. Jacobson. RTP: A Transport Protocol for
Real-Time Applications. RFC-1889, January 1996.

[16] C. Huitema J. Rosenberg, J. Weinberger and R. Mahy. STUN - Simple Traversal of UDP
Through Network Address Translators. IERF-Draft, December 2002.

[17] V. Jacobson. Pathchar - a tool to infer characteristics of internet paths. In Presented at MSRI
talk, April 1997.

[18] V. Jacobson and S. McCanne. Visual Audio Tool (vat). In Audio Tool (vat), Lawrence Berkley
Laboratory. Software on-line, ftp://ftp.ee.lbl.gov/conferencing/vat.

[19] J. Jannotti, D. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O’Toole Jr. Overcast:
Reliable Multicasting with an Overlay Network. In Proceedings of the Fourth Symposium on
Operating System Design and Implementation (OSDI), October 2000.

[20] K. Lai and M Baker. Nettimer: A Tool for Measuring Bottleneck Link Bandwidth. In
Proceedings of the USENIX Symposium on Internet Technologies and Systems, March 2001.

[21] J. Liebeherr and M. Nahas. Application-layer Multicast with Delaunay Triangulations. In
IEEE Globecom, November 2001.

29

[22] A.M. Kermarrec M. Castro, P. Druschel and A. Rowstron. Scribe: A large-scale and de-
centralized application-level multicast infrastructure. In IEEE Journal on Selected Areas in
Communications Vol. 20 No. 8, Oct 2002.

[23] S. McCanne, E. Brewer, R. Katz, L. Rowe, E. Amir, Y. Chawathe, A. Coopersmith, K. Mayer-
Patel, S. Raman, A. Schuett, D. Simpson, A. Swan, T. L. Tung, D. Wu, and B Smith. Toward a
Common Infrastucture for Multimedia-Networking Middleware. In Proceedings of NOSSDAV,
1997.

[24] S. McCanne and V. Jacobson. vic: A Flexible Framework for Packet Video. In ACM Multi-
media, November 1995.

[25] V.N. Padmanabhan, H.J. Wang, and P.A Chou. Resilient Peer-to-peer Streaming. In Proceed-
ings of IEEE ICNP, 2003.

[26] Peercast. http://www.peercast.org/.

[27] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An Application Level Multicast
Infrastructure. In Proceedings of 3rd Usenix Symposium on Internet Technologies & Systems
(USITS), March 2001.

[28] Planetlab. http://www.planet-lab.org/.

[29] Quicktime. http://www.apple.com/quicktime.

[30] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker. Application-level Multi-
cast using Content-Addressable Networks. In Proceedings of NGC, 2001.

[31] Real broadcast network. http://www.real.com/.

[32] R. Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service. Technical
Report TR98-1687, Cornell University Computer Science, 1998.

[33] L. Rizzo. Dummynet: a simple approach to the evaluation of network protocols. In ACM
Computer Communication Review, January 1997.

[34] B. Bhattacharjee S. Banerjee and C. Kommareddy. Scalable Application Layer Multicast. In
Proceedings of ACM SIGCOMM, August 2002.

[35] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-to-peer file sharing
systems. In Proceedings of Multimedia Computing and Networking (MMCN), January 2002.

[36] Slashdot. http://www.slashdot.org/.

[37] S.McCanne, V.Jacobson, and M.Vetterli. Receiver-driven layered multicast. In Proceedings of
ACM SIGCOMM, August 1996.

[38] Sorenson. http://www.sorenson.com/.

[39] S.Q.Zhuang, B.Y.Zhao, J.D.Kubiatowicz, and A.D.Joseph. Bayeux: An Architecture for Scal-
able and Fault-tolerant Wide-area Data Dissemination, April 2001. Unpublished Report.

[40] Streamer. http://streamerp2p.com/.

[41] W. Wang, D. Helder, S. Jamin, and L. Zhang. Overlay optimizations for end-host multicast. In
Proceedings of Fourth International Workshop on Networked Group Communication (NGC),
October 2002.

[42] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment for distributed systems and networks.
In OSDI02, pages 255–270, Boston, MA, December 2002.

30

